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Abstract

A discrete model has been constructed for the thermal decomposition of NH4HCO3 single crystals

according to the mechanism of nucleation and growth to impingement. The rate-time curve has been

computed in terms of the crystal structure of ammonium hydrocarbonate proceeding from micro-

scopic assumptions. This illustrates previously suggested discrete approach to solid-state reaction

kinetics in terms of Dirichlet tessellations.
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Introduction

Reactions that proceed within a crystalline matrix in such a way that this matrix is disin-

tegrated are dealt with in this paper. The word combination ‘solid-state reactions’ is used

for them in accordance with practice, but it should be recognized that this term is too

broad. It is also used, for instance, for reactions between very active species isolated in an

inert (e.g. argon) matrix. The need is felt to make words more precise. An original crystal

plays simultaneously two roles, the role of the reactant and the role of the medium in

which the considered reaction proceeds. This medium is disintegrated in the course of a

reaction. Obviously, there are no analogs in other fields of chemical kinetics. This feature

is neatly emphasized by the term ‘crystolysis’ [1]. Another specific term used for this

class of reactions is ‘topochemical reactions’ [2]. It emphasizes the fact, also very impor-

tant, that reactions under discussion proceed at the interface. It seems reasonable to men-

tion both terms as key words to facilitate the electronic search.

Kinetics of crystolysis reactions seems to be the field of physical chemistry in

which the gap between theory and experiment is the biggest, theory lagging behind

experiment. To reduce this gap, a discrete approach to crystolysis reaction kinetics

has been suggested. Its main points have been discussed in detail [3–7], but these pa-
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pers lack particular examples. The present paper complements them and aims to illus-

trate the main ideas and mathematical conceptions of the approach suggested in the

framework of a particular example.

Example: NH4HCO3

The choice of the example is determined by the following considerations.

One of the main points of the approach suggested is that a solid reagent must be

represented in kinetic models in terms of its crystal structure. The first step of any de-

composition is the disintegration of this structure with the redistribution of chemical

bonds and release of species that form new phase(s) as further steps. In mathematical

models currently in use, this step is not reflected properly. If, for example, the rate of

thermal decomposition of calcium carbonate is described using the Avrami–Erofeev

rate equation, this model implies formation of nuclei of the new phase and their

growth to impingement. This means that both the original phase disintegration and

the new phase formation are described together, though they may not be coherent

(and in the majority of cases are not coherent). To emphasize this lack of coherence,

we use as an example a reaction that proceeds according to a mechanism of nucle-

ation and growth to impingement, with the formation of gaseous products only. Such

a reaction is the thermal decomposition of NH4HCO3.

Once we are interested in details of the disintegration of the crystal structure, we

need experimental data for single crystals. One of the main reasons for choosing

NH4HCO3 as an example is the existence of experimental data for single crystals pre-

pared as carefully as for X-ray analysis [8–11]. We will refer to experimental data for

NH4HCO3 single crystals grown during 7 days at 7 to 10°C. In contrast to crystals se-

lected from a commercial batch, or quickly recrystallized, carefully prepared single

crystals demonstrate in thermal decomposition the so-called crystallographic corre-

spondence (or crystallographic factor), which means that thermal decomposition fig-

ures (rhombus) correspond to the crystal structure of NH4HCO3 . Decomposition fig-

ures of irregular form observed for quickly recrystallized crystals [9] are an example

of the lack of crystallographic correspondence.

In homogeneous kinetics the routine is to carry out a reaction in the kinetic regime if

the mechanism is under study; in the diffusion or mixed regime the mechanism cannot be

revealed. The same is the case for crystolysis reactions. But these reactions are more in-

volved, and in addition to the kinetic regime the crystallographic correspondence needs

to be provided for subtler insight into the mechanism. According to [12], the crystallo-

graphic correspondence may be achieved in many cases if crystals are prepared carefully

and reaction conditions are mild enough. For NH4HCO3 single crystals this is convinc-

ingly demonstrated [8–11]. Unfortunately, such a careful preparation of crystals currently

is far from being the common practice in solid-state reaction kinetics.

In addition to crystallographic correspondence, one more advantageous peculiarity

of the chosen example is that only one crystal face, (001), enters the reaction because

NH4HCO3 single crystals are plate-like. Approximate dimensions of (001) face of crys-

tals used are 20×5 mm [8]. When the thermal decomposition proceeds in the kinetic re-
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gime, rhombic figures oriented in one and the same manner are observed: the longer di-

agonal of each rhomb is oriented in [010] direction [11]. The kinetic region is above 60°C

[8, 11]; at lower temperatures the reaction proceeds in the diffusive region and the mech-

anism is different. If a relatively small number of nuclei is formed at the (001) crystal face

and the reaction has time to proceed considerably into the bulk, rhombic holes are ob-

served [9, 12]. This is the clearest example of negative crystals that appear and evolve ac-

cording to the model of nucleation and growth to impingement.

It is also important that kinetic data obtained microscopically and gravimetrically

agree; the conclusion is that the visually observed front coincides with the reaction inter-

face [10]. Generally, this may not be the case [12]. One more detail advantageous in the

present context is that according to X-ray and IR data no intermediate phases are formed

in the course of the reaction.

All three reaction products retard the reaction, but the influence of NH3 is great-

est [9]. On this basis it was suggested that NH4HCO3 decomposes into NH3 and

H2CO3. But this idea received at that time no theoretical support. Now, when the ki-

netic stability of H2CO3 has been shown both experimentally and theoretically [13],

the validity of that suggestion causes practically no doubt. This is one of the main rea-

sons for selecting this reaction as the example: chemical elementary event to be de-

scribed by kinetic models is the proton transfer

NH HCO NH +H CO4 3 3 2 3→ (1)

The most representative features of the chosen example are as follows:

• The reactant is a carefully prepared single crystal with only one face entering the

thermal decomposition reaction.

• The chemistry of the thermal decomposition is simply proton transfer, and only

gaseous products are formed. The reaction is not complicated by intermediate

phases or numerous phase transitions.

• The reaction proceeds according to a mechanism of nucleation followed by growth

to impingement with the formation of rhombic negative crystals the form of which

corresponds to the crystal structure of NH4HCO3

Perhaps, this is one of the simplest examples that a theorist may find within the

discussed class of reactions as a model one. The aim of this paper is to follow, step-

by-step, the pass from the crystal structure of ammonium hydrocarbonate to a dis-

crete kinetic model of its thermal decomposition.

Discrete model

A discrete model for NH4HCO3 thermal decomposition will be constructed in terms of

Dirichlet tessellations, planigons and random tessellations. Planigon theory [14, 15] is

new for chemical kinetics but is used in crystallography [16]. Random tessellations [17]

are new for chemistry (though successfully used in biology, astronomy, geography, etc).

All related mathematical conceptions have been explained in [3–7] and their advantages

in the context of solid-state reaction kinetics have been discussed. The aim of this section
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is to illustrate the approach suggested on a particular example. Accordingly, only very

brief explanations of mathematical tools are given.

NH4HCO3 crystal structure

The crystal structure of NH4HCO3 was reported in [18]. Crystals of NH4HCO3 belong

to the rhombic system; the space group is Pccn; parameters of the unit cell are:

a=7.255 �, b=10.709 �, c=8.746 �. For purposes of this paper the crystal structure

may be represented as being composed of separate NH4 tetrahedra and (HCO3)n

chains shown in Fig. 1a. This figure is a schematic representation of the crystal struc-

ture, not the molecular structure. With this in mind, lines between atoms should be

understood as direct contacts between atoms rather than covalent or hydrogen bonds.

Chains are situated along the c-axis. Each CO3 fragment is a plate and its declination

from the bc-plane is ±20°C; positive and negative declinations alternate along the

chain. There are three types of oxygen atoms in the structure. Each oxygen atom of

type 1 (Fig. 1a) has one short contact (0.913 �) with a hydrogen atom of the chain

(solid line in the figure); each oxygen atom of type 2 has one long contact (1.693 �)

with a hydrogen atom of the chain (dotted line); each oxygen atom of type 3 has no

contacts with hydrogen atoms of the chain. Two adjacent chains differ in orientation,

and also carbon atoms are shifted along c-axis. The third chain of the structure com-

pletely repeats the first one.

(HCO3)n chains are linked by NH4 tetrahedra, which have no direct contacts be-

tween themselves (Fig. 1b). Each NH4 tetrahedron is linked with four different (HCO3)n

chains: one contact with one chain. In Fig. 1b nitrogen atoms are situated above carbon

atoms, and two hydrogen atoms of each tetrahedron are free for contacts with two more

chains. Note that oxygen atoms of type 1 have no contacts with NH4 tetrahedra. Each ox-

ygen atom of type 2 has one contact with NH4 tetrahedra. Each oxygen atom of type 3 has

three contacts with different NH4 tetrahedra; only two of them are shown in Fig. 1b, the

third one being with a NH4 tetrahedron situated below the C-C plane.

J. Therm. Anal. Cal., 74, 2003

214 KOROBOV: EXPERIMENT vs. THEORY IN SOLID–STATE REACTION KINETICS

Fig. 1 Crystal structure of NH4HCO3 as viewed along a-axis: a – two (HCO3)n chains;
b – NH4 tetrahedrons are added; c – proton transfer with the escape of two mole-
cules into gaseous phase



It follows that each NH4 tetrahedron has three contacts with oxygen atoms of

type 3 and one contact with oxygen atom of type 2. Accordingly, it is reasonable to

assume for symmetry considerations, that the latter atom is transferred in the thermal

decomposition reaction. This is illustrated in the upper part of Fig. 1c. As will be

shown below, this assumption agrees with the localized character of the decomposi-

tion and the form of decomposition figures. More arguments in its favour are given in

[19] where the use is made of the benefit of numerous color illustrations.

The most developed crystal face of NH4HCO3 single crystals, which enters the

reaction, is perpendicular to the (HCO3)n chains. It cannot be represented in a way

similar to Fig. 1. Figure 2a schematically shows the projection of the crystal structure

on the (001) face, constructed using atomic coordinates for NH4HCO3 [18] and coor-

dinates of equivalent positions for the Pccn group [20]. The symmetry group of this

projection is c2mm; cell parameters a’=a and b’=b; the coordinate origin is at ¼, ¼, z

[20]. In Fig. 2 hydrogen atoms of (HCO3)n chains are not shown for simplicity.

Within the approach suggested a single crystal is described as the set of crystal-

lographic planes parallel to the chosen crystal face [3, 21]. The exposition of this ap-

proach convenient in the present context may be found, for example, in [22]. In these

terms, Fig. 2a represents the irreducible crystal plate, which is the set of four crystal-

lographic planes parallel to (001) face that exhaust all possible projections onto this

face. Note the following details of this figure. There are two types of nitrogen atoms:

those shown in white are situated higher and those shown in gray are situated lower.

The same is the case for carbon atoms: white atoms are situated higher than black

ones. Light gray oxygens are oxygens of type 2; dark gray oxygens are oxygens of

type 3. Oxygens of type 1 are projected practically at the same points as oxygens of
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Fig. 2 Projection of the NH4HCO3 crystal structure onto (001) face: a – two conjugated
NH4–HCO3 pairs are shown; b – planigon tessellation



type 2. The situation of light and dark gray oxygens alternates along the row. More

details of the surface structure are shown in color figures of [19].

From the crystal structure to kinetic models

Note that the effect of the reactant crystallography on the surface nucleation and the

advancement of reaction interface has been examined for a number of decomposition

reactions ([23] for review). But this information is not incorporated into kinetic

model functions in terms of the crystal structure of a solid reactant. As a result, it is

poorly used in quantitative kinetic data analysis. To overcome this gap is one of the

main aims of the approach suggested [3–5]. In this section, the conversion-time curve

for the NH4HCO3 thermal decomposition will be computed in terms of the described

crystal structure proceeding from the above proton transfer assumption.

Nucleation (1)

It is commonly agreed that this stage is the most controversial one. It is difficult to inves-

tigate both experimentally and theoretically. The cited publications on NH4HCO3 ther-

mal decomposition are not an exception in this respect: very little attention is paid to nu-

cleation. Generally nuclei are formed at defects of the crystal structure; defects are

random and disparate. Within approach suggested, relevant issues convenient to discuss

after the unrestricted growth in terms of planigons will be introduced. To postpone this

discussion, we will adopt as the zero approximation the most simple model situation:

there are no surface imperfections and the reaction starts due to proton transfer as the re-

sult of its fluctuation. Later we will return to more realistic situations.

Suppose that a proton has passed from the NH4 tetrahedron (1) in Fig. 2a to the

oxygen atom of type 2 of HCO3 group (2) as a result of a fluctuation. Note that this is

the only proton of this NH4 tetrahedron that may transfer according to the above as-

sumption. This transfer is followed by the escape of corresponding NH3 and H2CO3

molecules into the gaseous phase. As a result, the HCO3 group (4) will be disturbed

which also has direct contact with the NH4 tetrahedron (1), but via the oxygen atom of

type 3; two other contacts being with deeper groups. It is reasonable to expect that

this group will take the corresponding proton from the NH4 tetrahedron (3), which in

turn also has direct contact with the HCO3 group (2) via the oxygen atom of type 3

and, accordingly, will also be disturbed upon escape of this group. Thus, it is unlikely

that groups (1) and (2) will pass to the gaseous phase without groups (3) and (4). We

will consider the discussed groups as two conjugated NH4 – HCO3 pairs that simulta-

neously pass into the gaseous phase as a result of a fluctuation, thus giving birth to a

model nucleus of the negative crystal.

Planigon tessellations

Planigons are fundamental regions of two-dimensional Fedorov groups [16]. The the-

ory of planigons has been developed by Delone et al. [14] and by Grunbaum and

Shephard [15]. Various aspects of their use in describing the crystolysis reaction ki-
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netics and relevant mathematical conceptions have been discussed in [3, 24]. In brief,

main advantages of planigons in comparison with the more familiar language of crys-

tal lattices are as follows. An extensional measure may be put into correspondence to

an atom or group of atoms. The description of the crystal structure in terms of

planigons is more detailed because the combinatorial-topological net is taken into ac-

count along with the symmetry [14]. This means that several types of planigons cor-

respond to the same two-dimensional symmetry group. This more detailed descrip-

tion is adequate to the wide variety of the observed localization figures. For each

planigon, adjacent planigons may be pointed out. Below this is used in moving from

the geometry of the crystal structure to the decomposition kinetics.

The transition from the NH4HCO3 crystal structure to planigon tessellations is as

follows. The space group of NH4HCO3 is Pccn [18]. The two-dimensional group of the

projection of the crystal structure onto the (001) face (shown in Fig. 2) is c2mm [20]. As

many as eight types of planigons correspond to this group: two general types and six spe-

cial types [14]. In addition to the symmetry group, the choice of the planigon type de-

pends on the cell parameters and on the system of points for which the planigon tessella-

tion is constructed. This may be a set of particular symmetrically equivalent atoms or

groups of atoms, but may be a set of any other uniquely defined symmetrically equivalent

points. According to the above nucleation assumption, it is reasonable to construct the

planigon tessellation for centers of conjugated NH4–HCO3 pairs. In this case planigon

type P4A,23 (from tables in [14]) is relevant. A piece of corresponding planigon tessella-

tion is shown in Fig. 2b.

Reaction interface

Reactions of the type discussed occur at the reaction interface. Langmuir substanti-

ated this statement using the rule of contraries: otherwise solid solutions would be

formed instead of separate phases [25]. This is a purely macroscopic explanation of

the localization phenomena. In conventional kinetic models the reaction interface is

represented as a surface without thickness which separates two phases, and particular

atoms or groups of atoms are not represented. To make a model chemically meaning-

ful means to explain the localization phenomena in terms of elementary events. For

this, a more detailed representation of the reaction interface is required.

A reaction is localized at the interface due to enhanced reactivity of interface atoms

or groups of atoms. These atoms are said to be in the reaction situation. Also, we will say,

for simplicity, that a planigon has entered the reaction if atoms contained in that planigon

have entered the reaction. To a considerable extent, the local increase of reactivity is the

result of the disruption of the crystal lattice. Suppose that the gray planigon in Fig. 2b has

entered the reaction, i.e. atoms represented by this planigon have passed to the gaseous

phase as described above. As a consequence, eight neighboring planigons appear to be in

the reaction situation. NH4 – HCO3 pairs contained in these planigons have a higher prob-

ability of entering the reaction as a result of being disturbed by the disruption of the crys-

tal lattice. These eight planigons form the reaction zone. In these terms the localized ad-

vance of the reaction interface may be described.
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Unrestricted advance of the reaction interface

The unrestricted advance of the reaction interface occurs until the first impingement

with a neighboring growing negative crystal. The advance along the surface is de-

scribed in terms of planigons; the advance into the bulk is described layer-by-layer

[3, 21]. This means that the description is 2-dimensional+1-dimensional.

For the particular example discussed, the description is as follows. In the direction

perpendicular to the (001) face, the crystal is subdivided into irreducible crystal plates,

each being represented by the planigon tessellation. Two of them are shown in Fig. 3.

The first step for plate 1 is a planigon in the reaction situation (Fig. 3a). At the next step

this planigon enters the reaction, and eight more planigons appear to be in the reaction sit-

uation, i.e. form the reaction interface (Fig. 3b). At this step the reaction interface is prop-

agated (or transmitted) to these eight planigons. An equal probability is assumed for them

to enter the reaction at the next step. Strictly speaking, these planigons are not completely

equivalent: four of them represent the same crystal layer as the starting planigon, whereas

four others (which have one dotted edge in Fig. 2b ) represent the lower crystal layer. But

still all of them represent the same irreducible plate, and here we will not distinguish

them. This is a possibility for further detailing the model in the future. At step 3, eight

planigons enter the reaction and the reaction interface propagates towards sixteen more

planigons. Also, at this step, the central planigon of the second irreducible plate comes to

light and appear to be in the reaction situation. This means that the reaction interface is

propagated towards the second plate, and further events within the second plate will re-

peat the events described within the first plate. Thus described decomposition is localized

within the reaction interface. The decomposition figure is a rhomb with the ratio of diag-

onals 1.467. Before nuclei impinge (or intersect), their boundaries move with practically

constant rate [10, 11]. At the temperature 80°C and pressure 10–2 Pa the microscopically

registered rate along the bigger diagonal is v1=120±20·10–5 mm min–1; the rate along the

smaller diagonal is v2=81±10·10–5 mm min–1 [10]. The ratio of rhomb diagonals agrees

well with the ratio v1/v2=1.482.

Step s in this description is a discrete variable that stands for time. Planigons repre-

senting each step at the reaction interface form a concentric belt around planigons that

have entered the reaction. It was shown in [21] that generally the unrestricted growth in

terms of planigons is describable by second-order difference equations. In this particular

case the equation of the unrestricted growth is very simple:

n s s( ) = +8 1 (2)
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where n(s) is the number of planigons in the concentric belt at step s; s is counted off

zero; s=0 corresponds to the formation of nucleus. Remind that each planigon con-

tains two conjugated NH4 – HCO3 pairs. The relationship of n(s) to the degree of con-

version will be discussed below. The relationship of s to actual time is as follows. At

each step the advance of the reaction front is 10.7·10–8 cm along the bigger diagonal

and 7.3·10–8 cm along the smaller diagonal, which follows from the above cell param-

eters. Comparison of these figures with v1 and v2 show that one step takes ~10–2 s.

Nucleation (2)

To simplify the picture, we started with an unrealistic assumption about the nucleation.

Nuclei are formed at defects of the crystal structure that are random in their situation, ori-

entation and the number of atoms (planigons) involved. The central issue here is whether

these random nuclei may evolve with time into regular negative crystals oriented in one

and the same manner. To approach this issue cellular automata on planigon tessellations

have been introduced [3, 21, 26]. They provide the possibility to describe the transforma-

tion of random irregular nuclei into regular symmetric figures with subsequent stable

growth. Rules may be formulated according to which nuclei different in the number of

planigons, form and orientation, evolve into the same regular figure.

In Fig. 4 all possible 2-nuclei (i.e. nuclei consisted of two planigons) are shown

for the example discussed. There are three possible nuclei. Consider the planigon tes-

sellation as a cellular automation and introduce the following simple rule.

Two values, c=0 and c=1, are possible for each planigon; c=0 means that planigon

has not yet entered the reaction, c=1 means that planigon has entered the reaction.

If a planigon with the value c=0 has at its boundary two planigons with the value

c=1, the reaction is propagated towards it first of all.

If each of boundary planigons with c=0 have one common edge with the grow-

ing negative crystal, the interaction is propagated simultaneously towards all these

planigons.

For 1-nucleus this rule provides the unrestricted growth shown in Fig. 3. The

same is the case for two of three 2-nuclei shown in the left part of Fig. 4. The third

2-nuclei, shown in the right part of Fig. 4, evolves into a parallelogram (first two

steps are shown). But note that this parallelogram only slightly differs from the rhom-

bus, and in microscopic observations these two figures are difficult to distinguish. It

may be shown in the same manner that there are eight 3-nuclei: four evolve into

J. Therm. Anal. Cal., 74, 2003

KOROBOV: EXPERIMENT vs. THEORY IN SOLID–STATE REACTION KINETICS 219

Fig. 4 All possible 2-nuclei and first steps of their evolution in terms of planigons



rhombus and four others evolve into parallelograms. Therefore, starting from differ-

ent nuclei, we ultimately arrive at the stable growth of regular negative crystals as de-

scribed in the previous section. An advantage of this approach is that the evolution of

a random nucleolus into a regular negative crystal and further evolution of this regu-

lar negative crystal until the impingement with a neighbour are described in one and

the same terms. Within conventional geometric-probabilistic approach this is not the

case. Widely used nucleation laws (instantaneous nucleation, constant intensity of

nucleation, etc.) concern critical nuclei that must be of the same form and orientation.

Otherwise, the applicability conditions will be violated [27]. The way in which sub-

critical nuclei evolve into stable ones is not tractable within conventional approach.

This point is discussed in detail in [4].

Restricted advance of the reaction interface

As nuclei grow, they impinge (or intersect). This stops their growth in the direction of the

contact, the growth in other directions being unchanged. These impingements of ran-

domly situated nuclei, generally of different age, determine the actual extension of the re-

action interface, to which the reaction rate is proportional. The picture obtained after the

process has been completed is termed the random tessellation [17]. In some cases the ran-

dom tessellation may be directly observed. An example is a carefully polished metallo-

graphic lapping. But this possibility is an exception rather than the rule. Mathematical as-

pects of random tessellations are the subject of stochastic geometry [28].

In Fig. 5 a very small piece of a random tessellation is sketched for the (001)

face of NH4HCO3 single crystal. There are 7 nuclei in this figure shown in black.

Again, for simplicity each nucleus consists of one planigon. To construct the random

tessellation for them means to subdivide the plane into domains in such a way that all

planigons of the given domain will be closer to one of the nuclei than to any other.

This nucleus is termed the centre of action for this domain. In relating a particular

planigon to one or another nucleus, the distance is measured in the number of steps

required a growing nucleus to reach this planigon. This means that the metric is deter-

mined by the NH4HCO3 crystal structure and differs from the Euclidian one. Some

planigons are equidistant from two nuclei. These are planigons at which impinge-

ments of growing nuclei occur, and they form boundaries of domains. In Fig. 5 these

planigons are shown in grey. Only one domain of the central nucleus is shown in the

figure completely. This domain may be considered as the nucleus that has grown
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completely. Alternatively, it may be considered as the domain that will be occupied

in the long run by the growing nucleus [6]. In this case function N(s) may be associ-

ated with this domain, where N is the number of planigons constituting the growing

nucleus at step s. If N0 is the total number of planigons constituting the domain, then

a(s)=N(s)/N0 is the degree of conversion for this domain. N(s) and a(s) functions for

the central domain in Fig. 5 are given in Table 1 (N0=139). Of course, Fig. 5 is a sche-

matic representation for which these functions may be easily calculated by hand. Far

more steps are required in reality for a nucleus to reach boundaries of the domain. The

sum of a(s) functions for all domains of the random tessellation divided by the num-

ber of domains is a conversion-step curve [6, 29]. This illustrates the idea of comput-

ing the conversion-time curves in terms of random tessellations. Technical details

and the numerical algorithm have been described in [30].

Table 1 Conversion-step function for the central domain of Fig. 5

s N(s) a(s)

0 1 0.117

1 9 0.065

2 25 0.180

3 49 0.353

4 80 0.576

5 107 0.770

6 122 0.878

7 133 0.957

8 139 1.000

Discrete random tessellations are tractable only numerically. The simplest case

is when all nuclei appear simultaneously (Voronoi tessellations). For this reason we

will use experimental data for which practically simultaneous formation of nuclei has

been reported [9, 12].

To compute the conversion-time curve in terms of random tessellations, we need

to know the density λ of nuclei. In [8–11] the poor reproducibility of this parameter is

reported and no particular values are given. From the data available it may be esti-

mated as follows. Denote the total conversion as A(t), and the conversion within one

irreducible crystal plate as α(t). Within the description layer-by-layer, the total con-

version is the sum of α(t) functions over all irreducible plates

A t( ) = ∑α ζ( – )
i = 1

N

t i (3)

where N is the number of irreducible plates in a single crystal, ζ is the time required

for the reaction interface to propagate from the given plate to the next one (in Fig. 2 it

equals 3 steps, i.e. ~10–2–10–3 min). The number of plates N may be estimated from
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the crystal thickness [9] as ~105. The inflection point on the experimental Aexp(t)
curve [8] is at t = 9 min. From relationship (3) the point of inflection of the α(t) curve

is estimated as t ~5 min. Thus, we need to compute a random tessellation with the in-

flection point on conversion-time curve at step s ~103. The A(t) curve computed using

numerical procedure [30] is shown in Fig. 6.

Hierarchical kinetic model

The nature of the reactions considered is such that chemical regularities manifest

themselves in the observed kinetic behaviour indirectly, breaking through the univer-

sal geometrical regularities of the growth and impingement of nuclei. Conventional

geometric-probabilistic models are macroscopic ones and adapted for describing only

the latter regularities. With respect to them, chemical regularities are more micro-

scopic; in other words, they belong to a deeper level of the micro-macro hierarchy.

The approach suggested aims to discern chemical regularities through more macro-

scopic geometrical regularities. The conversion-time curve in Fig. 6 has been com-

puted proceeding from microscopic assumptions. The main steps are as follows.

The mechanism of the reaction is assumed to be proton transfer, and from an ex-

amination of the NH4HCO3 structure an assumption has been made as to which pro-

ton is transferred.

The crystal structure of NH4HCO3 has been represented in terms of planigons

and irreducible crystal plates. With the account of above assumptions, planigons have

been constructed for conjugated NH4-HCO3 pairs: each planigon represents two con-

jugated pairs.

The advance of the reaction front has been separated into the advance along the

surface and into the bulk. The former is described as the propagation of the reaction

from a nucleus to adjacent planigons. This means that kinetics of the reaction is repre-

sented in terms of the crystal structure of the solid reactant.

Impingements of randomly situated negative crystals are described in terms of

random tessellations formed by planigons. The conversion-time curve is computed in

these terms. Note that the metric of the random tessellation and parameters of dis-

creteness are uniquely determined by the NH4HCO3 crystal structure. In this way the
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Fig. 6 Experimental (solid) and calculated (dotted) conversion-time curves for
NH4HCO3 thermal decomposition (80°C, 10–2 Pa)



chemical individuality of the solid reactant manifests itself on a more macroscopic

scale of nuclei impingements.

The model constructed is a hierarchical one in contrast to purely macroscopic

conventional geometric-probabilistic models. Assumptions concerning proton trans-

fer and equal probability for definite atoms to enter the reaction are microscopic as-

sumptions. In generalizing them onto the macroscopic level, the use is made of the

fact that both planigon tessellations and random tessellations are Dirichlet tessella-

tions, though of different scale. This formal aspect is discussed in detail in [3-5]. This

means the possibility to agree both microscopic and macroscopic levels in one and

the same mathematical terms and to compute the conversion-time curve proceeding

from microscopic assumptions.

The computed conversion-time curve is shown in Fig. 6 together with the exper-

imental curve [8]. Strictly speaking, this is not the comparison of these curves since

one important parameter, nuclei density λ, has been estimated from experimental ki-

netic data. For the comparison in the strict sense it must be known before computa-

tions. Still it may be concluded that the model gives a reasonable curve. Note in this

connection that only the simplest variants are considered in this paper to illustrate the

approach. Further detailing of the model is possible at practically all stages, provided

that this is justified by available experimental data. The crystal structure may be rep-

resented in terms of planigons in more detail; more versatile rules may be suggested

for describing the nucleation in terms of planigon tessellation cellular automata; ran-

dom tessellations may be constructed for nuclei of different age, etc. In a word, a

‘zero approximation’ is presented in the paper and the fit may be adjusted in the num-

ber of ways. But there is one material restriction. The inflection point in the experi-

mental curve corresponds to Aexp=12.8%. This is not in agreement with the mecha-

nism of nucleation and growth to impingement. In terms of random tessellations Amax

is about 35 to 45%. The same estimate is obtained for the Avrami–Erofeev rate equa-

tion: αmax=0.4 for n=2 and αmax=0.29 for n=3; irrespective of k. The model curve in

Fig. 6 falls within this range (37%). It is very important that this requirement of the

model is supported by experimental estimations for Amax in the range 30–40% [11].

The conclusion is that the fit may be considerably improved, but counter-efforts of

experimenters are needed. Without this a further adjustment is not justified.

Conclusions

The model suggested is a first attempt to describe the kinetics of crystolysis reactions

in chemical terms of the crystal structure and elementary events. The model is based

on experimental observations for specially prepared plate-like single crystals of

NH4HCO3. It illustrates previously suggested discrete approach [3–7] using a sim-

plest example that a theorist may find within the discussed class of reactions. This ap-

proach is an extension of rather than an alternative to the conventional geometric-

probabilistic approach [4]. As conventional models, the model suggested describes

the formation of nuclei and their growth to impingement. In contrast to conventional

models, it provides the room for representing the crystal structure of a solid reagent
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and elementary events. Accordingly, it is much more involved. Intuition of a chemist

tells that such models as Avrami–Erofeev rate equation are too simple to be adequate

in all respects. They may be good enough if we are ready to restrict ourselves with

only geometrical regularities of the reaction front advance on the macroscopic scale,

but hardly suitable if a more subtle insight into the mechanism is the aim. More sim-

ple homogeneous reactions are described by models the mathematical structure of

which is more complicated. The main aim of this paper is to show the principle possi-

bility of developing models in this respect. Among disparate aspects of kinetic data

analysis discussed in the current literature [31–37], this aspect gets an insufficient at-

tention. The model proceeds from two microscopic assumptions and result in the ac-

ceptable conversion-time curve. It may be detailed in a number of ways, but more ex-

perimental information is required as the basis for this. Further development of the

approach requires examination of carefully prepared single crystals (first of all,

plate-like ones) with as well-characterized faces as possible. Modern experimental

techniques available provide in this respect more possibilities than are used in the

field. Reactions proceeding with the formation of only gaseous products are of espe-

cial interest at the first stage.
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